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Abstract

A theoretical description of the ¯otation of semiBrownian spherical particles by small spherical
bubbles containing a surface active substance is presented. The surfactant is considered to be insoluble
in the bulk and to have small deviations in surface coverage. Collection e�ciencies between the
surfactant covered bubbles and the rigid particles are calculated with allowance for gravity, Brownian
motion, and van der Waals attraction for a variety of bubble PeÂ clet numbers and particle-to-bubble size
ratios. The hydrodynamic problem was decomposed into axisymmetric and asymmetric parts, and
pairwise hydrodynamic mobility functions were calculated for di�erent degrees of bubble surface
mobility. The e�ect of the adsorbed surfactant is characterized by the dimensionless surface retardation
parameter, A �MaPes, a product of the Marangoni and surface PeÂ clet numbers. A � 0 corresponds to
a bubble with a freely mobile interface. For the limiting case of A41, the axisymmetric problem
reduces to that of a bubble with a rigid interface. In the asymmetric problem, however, higher
transversal mobilities occur for the case of A41 than for those of a rigid bubble. This fact results in
lower collection e�ciencies for A41 than for rigid bubbles, in some cases by as much as 80%. In
general, the maximum in¯uence of the bubble surface mobility on the collection e�ciency occurs in the
range where bulk convective and di�usive e�ects are comparable; in these cases, the collection
e�ciencies may vary by more than an order of magnitude for the range of possible values assumed by
the surface retardation parameter. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many applications in mineral engineering, environmental engineering and chemical
processing, puri®cation of aqueous streams by ¯otation is best carried out by the dissolved-air
or electrolytic methods. These techniques generate very small bubbles with diameters in the
range 20 to 100 mm, which are better suited than larger bubbles for the removal of the very
®ne suspended colloidal particles encountered in many of these applications (Zabel, 1984). In
order to increase the hydrophobicity of the suspended matter, and thus facilitate their
collection by bubbles, it is common practice to employ a surface active agent in the pulp
(Gaudin, 1957). The adsorption of this surfactant on the rising bubbles and its distribution
over each bubble surface a�ect the ¯otation rate.
Since the pioneering studies of Frumkin and Levich (1947) describing the retardation

mechanism of an adsorbing surfactant on a single bubble rising in a liquid, numerous studies
concerned with this problem have appeared in the literature. Depending on the values assumed
by key physical parameters, diverse limiting situations have been identi®ed, including a
nonretarded ¯uid velocity pro®le (Wasserman and Slattery, 1969; Saville, 1973; Agrawal and
Wasan, 1979; Harper, 1988), the uniformly retarded ¯uid velocity pro®le (Levich, 1962;
Holbrook and LeVan, 1983), the stagnant-cap model (Gri�th, 1962; Sadhal and Johnson,
1983; Cuenot et al., 1997), and the completely stagnant interface (Gri�th, 1962).
The situation of interacting particles, drops, and bubbles in the presence of an adsorbed

surfactant has received limited attention. The limiting case of point particles di�using to a
rising bubble whose interfacial mobility is modi®ed by an adsorbed surfactant has been treated
by Lochiel (1965). His results are applicable to conditions of Stokes ¯ow and boundary-layer
¯ow, the former limited to the cases of extremely high and extremely low bubble surface
mobilities. Kawase and Ulbrecht (1982) extended Lochiel's analysis to rising bubbles in a non-
Newtonian ¯uid, while Brunn and Isemin (1984) used an approximate analysis based on the
integral form of the convection-di�usion equation to correlate the dimensionless mass-transfer
rate to the PeÂ clet number for a rising bubble under conditions of creeping ¯ow. Recently,
Ramirez and Davis (1999) performed an exact numerical analysis of this problem for arbitrary
surface mobilities but with small deviations in surfactant coverage. Also, Blawzdziewicz et al.
(1999) considered the related problem of identical surfactant-covered drops in a linear Stokes
¯ow or in Brownian-induced motion, with allowance for van der Waals interactions. Lerner
and Harper (1991) extended the stagnant-cap model to two bubbles with equal radii rising
along their line of centers in Stokes ¯ow.
In this study, we calculate the ¯otation rate of neutrally buoyant, spherical solid particles by

spherical bubbles in an aqueous medium under the presence of a surfactant which can be
considered insoluble in the bulk phase. Adsorption of this surfactant on the interface of the
rising bubbles results in a non-zero tangential stress on the bubble interface, a phenomenon
commonly known as the Marangoni e�ect. The deviation in surface coverage is assumed to be
small, which corresponds to the limit of uniform retardation of the interfacial velocity (Harper,
1988). Under the assumption of negligible inertia, the motion of the bubble and suspended
particle is decomposed into axisymmetrical and asymmetrical contributions. Pairwise
hydrodynamic mobility functions are calculated through the methods of bispherical coordinates
and multipole expansions, respectively. These mobility functions are used to calculate the
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bubble-particle collection e�ciencies under conditions relevant to micro¯otation. The e�ects of
buoyancy, Brownian motion, and van der Waals attraction are considered.

2. Formulation of the problem

We consider a dilute dispersion of spherical bubbles of radius a1, number density n1, and
negligible density and viscosity rising with velocity V 0

1 in an undisturbed ¯uid of density r and
viscosity m: The ¯uid contains small solid particles of radius a2, number density n2, solid
density r2, and sedimentation velocity V 0

2: The interfacial mobility of the rising bubble is
a�ected by an adsorbed surfactant. Since we will be limited to the conditions typical of
micro¯otation (spherical bubbles no larger than 50 mm in diameter rising in water at ambient
temperature), the governing equations for the ¯uid surrounding the bubble and particle are the
Stokes equations,

mr2v � rp, �1a�

r � v � 0: �1b�
In the vicinity of the suspended particle, the boundary conditions necessary to specify the ¯ow
®eld are (i) impenetrability of the particle surface and (ii) no slip. For the case of the rising
bubble, the condition of zero normal relative velocity at the surface of the bubble applies
(assuming no deformation of the interface occurs for small bubbles); however, the tangential
stress balance implies the existence of a ®nite interfacial shear stress given by (Levich, 1962)

tt � rss, �2�
where tt is the tangential stress vector and rs is the surface gradient of the interfacial tension.
The interfacial tension is a function of the local surfactant surface coverage: s � s�G�:
The transport of insoluble surfactant on the surface of the translating bubble at steady-state

is governed by (Levich, 1962)

rs �
�
Gv�t ÿDsrG

� � 0, �3�
where v�t is the ¯uid tangential velocity relative to the center of the moving bubble, Ds is the
isotropic surfactant surface di�usivity, and G is the surfactant surface concentration. The latter
may be written as G � G0 � DG, where G0 is the average surfactant surface concentration and
DG is the deviation from the average. The characteristic di�usive ¯ux of surfactant along the
bubble surface is then of order DsDG=a1, while the convective ¯ux is of order V 0

1G0 (or less, if
strong Marangoni stresses due to the surfactant concentration gradient retard the interfacial
motion). Thus, the deviation in surface coverage is small compared to the average value,
DG� G0, when surface di�usion is strong, Pes � V 0

1a1=Ds � 1, where Pes is the surface PeÂ clet
number for the bubble. The deviation in surface coverage is also small when the Marangoni
stresses are strong, as shown by Cristini et al. (1998) and Blawzdziewicz et al. (1999), even if
surface di�usion is weak. In this case, a Marangoni stress of order BDG=a1 balances the
viscous stress of order �mV 0

1�=a1 on the bubble surface, where B � ÿ@s=@G is assumed constant
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for small variations in surface concentration. Thus, the condition DG� G0 is met when
Ma � BG0=mV 0

1 � 1, where Ma is the Marangoni number, for arbitrary Pes. Note that B � RT
for nonionic surfactants at low surface coverages in the absence of long-range interactions
(Levich, 1962), where R is the universal gas law constant and T is the absolute temperature.
The requirement Pes � 1 or Ma� 1 for nearly uniform surface coverage is typically met for
the small bubbles used in micro¯otation (Ramirez and Davis, 1999).
The tangential stress jump at the bubble interface yields the relation tt � rss � ÿBrsG:

Substituting this relation in Eq. (3) with G � G0 yields

Ars � vt � rs �PPPt � 0, �4�
where vt � v�t =V

0
1, PPPt � �a1tt�=�mV 0

1�, A � �BG0a1�=�mDs� �MaPes is the surface retardation
parameter, and the spatial variables have been made non-dimensional by the bubble radius, a1.
For small values of A, the surfactant has little e�ect on the free-slip ¯ow along the bubble
interface, whereas Marangoni stresses due to the surfactant gradient retard interfacial motion
at large A.
The collision e�ciency is calculated by ®nding the ratio between the actual ¯ux of particles

into the contact surface enclosing the bubble at r � a1 � a2, and the ¯ux resulting when
bubble-particle interactions are neglected, J 0

12: The former is given by (Zinchenko and Davis,
1994)

J12 � ÿn1n2
�
r4a1�a2

p�V1 ÿ V2� � r
r

dA, �5�

where n1 and n2 are the number densities of bubbles and particles at a given time of size a1 and
a2, p�r� is the pair distribution function (Batchelor, 1982), V1�r� and V2�r� are the velocities of
the interacting bubble and particle, respectively, and r is the vector connecting the centers of
the bubble and particle. The collection e�ciency is then calculated as

E12 � J12

J 0
12

� J12

n1n2
ÿ
V 0

1 ÿ V 0
2

�
p�a1 � a2�2

: �6�

The pair distribution function, p�r�, is obtained by solving the Fokker±Planck equation:

r � �p�V1 ÿ V2�
� � 0: �7�

In order to describe the hydrodynamic interactions between the bubble and particle, we write
their relative velocity as (Batchelor, 1982)

V1�r� ÿ V2�r� �
ÿ
V0

1 ÿ V0
2

� � �rr

r2
L�s� �

�
I ÿ rr

r2

�
M�s�

�
ÿ D0

12

kT
�
�

rr

r2
G�s� �

�
I ÿ rr

r2

�
H�s�

�
� rF12�r�

ÿD0
12

�
rr

r2
G�s� �

�
I ÿ rr

r2

�
H�s�

�
� r�lnp�r��, �8�
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where s � 2r=�a1 � a2�, I is the unit second order tensor, kT is the product of the Boltzman
constant and the absolute temperature, T, and F12 is the interparticle potential. The velocity of
an isolated bubble due to buoyancy is given by Levich (1962), considering the e�ects of a bulk-
insoluble surfactant on its surface:

V0
1 � ÿ

2

9m
ra21

A� 3

A� 2
g, �9�

where g is the gravity acceleration vector. The sedimentation velocity of an isolated particle is
given by Stokes law: V0

2 � 2�r2 ÿ r�a22g=�9m�, but it is assumed that the particle is small
compared to the bubble and/or neutrally buoyant, so that V 0

2 � V 0
1:

The relative di�usivity when the bubble and particle are widely separated and non-
interacting is (Batchelor, 1982)

D0
12 � D0

1 �D0
2 �

kT�3� A�
6pma1�2� A� �

kT

6pma2
: �10�

3. Method of solution

In order to solve Eq. (7), we ®rst write Eq. (8) in spherical coordinates (Zhang and Davis,
1991):

V1�r� ÿ V2�r�
V 0

1 ÿ V 0
2

� ÿLcos yer �Msin yey ÿ 1

Q12
G

df
ds

er

ÿ 1

Pe12

�
G
@�ln p�
@s

er � H

s

@�ln p�
@f

ey

�
,

�11�

where er and ey are the unit vectors along and normal to the line of centers, respectively, and y
is the angle de®ned by gcos y � ÿg � er: The relative PeÂ clet number, Pe12, provides a measure of
the relative importance between gravitational motion and Brownian di�usion, and the
parameter Q12 is a ratio of gravitational and van der Waals contributions:

Pe12 � �a1 � a2�
ÿ
V 0

1 ÿ V 0
2

�
2D0

12

, Q12 � kTPe12
AH

: �12�

Substitution of Eq. (11) into Eq. (7) yields, after neglecting the contribution of transversal
di�usion (Zinchenko and Davis, 1994),

@

@s

"
s2pLu� Gs2pÂ

Pe12

df
ds
� Gs2

Pe12

@p

@s

#
�Ms

@
�
p�u2 ÿ 1�

�
@u

: �13�

Here, u � cos y, the dimensionless Hamaker constant, Â, is normalized by kT, and the
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dimensionless interparticle force potential is given by f � F12=AH (where F12 is the force
potential and AH is the composite Hamaker constant).
The neglect of the contribution of di�usion in the transversal direction is commonly referred

to as the parabolic approximation (Zinchenko and Davis, 1994). For small relative PeÂ clet
numbers �Pe12 � 1), Brownian di�usion is dominant and the pair-distribution, p, is radially
symmetric (depending only on s and not on y). Then, transverse di�usion in the angular
direction is negligible. For the opposite limit of Pe12 � 1, for which gravitational motion is
dominant, the pair-distribution function is also radially symmetric (Batchelor, 1982). Although
this radial symmetry does not hold for intermediate Pclet numbers, the global error in the
collection e�ciency resulting from the neglect of transverse di�usion is expected to be small.
Indeed, as shown by Zinchenko and Davis (1994) for coalescence of drops of the same ¯uid
dispersed in a second ¯uid, the global contribution of the transversal di�usion term is always
insigni®cant (although local contributions exist), with errors in the coalescence rate not
exceeding 2±3% when the whole range of relative PeÂ clet numbers is considered.
The parabolic di�erential equation is solved by expanding the solution for p�s,u� in powers

of uÿ 1 (assuming regularity at u � 1� for a given value of Pe12, instead of ®nite-di�erence
marching from u � 1, and then successively ®nding the coe�cients of a su�cient number of
terms by substituting this power expansion into Eq. (13). In the radial direction, the same
®nite-di�erence scheme as in Zinchenko and Davis (1994) is used. The cuto� distance was set
at s1 � 25, which allows us to cover the whole range from moderate to large Pe12:
The hydrodynamic mobility coe�cients are calculated a priori as functions of the

interparticle distance, s, for use in the ®nite-di�erence scheme for the radial direction. Due to
the linearity of the Stokes equations, the hydrodynamic problem may be treated by separately
considering the instantaneous bubble-particle motion along their line of centers (axisymmetric
problem) and perpendicular to the their line of centers (asymmetric motion). The ®rst problem
is solved in a resistance formulation through the technique of bispherical coordinates (Stimson
and Je�erey, 1926), while the latter was approached through the method of multipole
expansions, following the technique outlined by Zinchenko (1982). Even though the method of
multipole expansions is computationally much simpler than that of bispherical coordinates, it
becomes quite ine�cient for the axisymmetric problem when the separation is small at extreme
particle-to-bubble size ratios and very low bubble surface mobilities, necessitating a very large
number of terms in the expansion before convergence is achieved. This problem does not occur
for the asymmetric case, since, as will be seen later, surface sliding occurs even in the case of
high values of A, which results in reasonable convergence rates. A detailed description of both
methods can be found in Appendices A and B for the calculation of the axisymmetric mobility
coe�cients (L and G ) and the asymmetric mobility functions (M and H ), respectively.

4. Results and discussion

In order to better understand the e�ect of the adsorbed surfactant on the overall collection
e�ciencies, it is useful to study the behavior of the pair-wise mobility functions at varying
degrees of surface mobility. In the discussion in the following paragraphs, the terms completely
mobile and rigid will be used in reference to a bubble whose interface is free of surfactant and
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has no tangential stress and one whose interface is completely immobile and has no tangential
velocity relative to the center of the bubble, respectively.

4.1. Relative mobility functions for gravitational motion

Fig. 1 shows the dimensionless relative velocity along the line of centers for motion induced
by gravity, for three values of the particle-to-bubble size ratio, l � a2=a1, representative of the
range typically encountered in micro¯otation. As expected, the relative mobility decreases with
decreasing separation and increasing values of the retardation parameter, due to increased
hydrodynamic interactions. As the dimension of the particle becomes comparable to that of the
bubble (see Fig. 1(a)), the dependence of the relative mobility function on the surface
retardation weakens, tending to completely mobile behavior at su�ciently small dimensionless
gaps for any ®nite A. This is due to the lubrication ¯ow in the narrow gap separating the
particle and bubble being able to overcome the Marangoni stresses and cause the interface to
¯ow (Cristini et al., 1998). For smaller particles (see Fig. 1(b) and (c)), the relative velocity
with respect to the rising bubble is dictated mainly by the ¯ow ®eld surrounding the bubble, as
the e�ect of the particle on this ¯ow ®eld diminishes with decreasing particle size. The
dependence of the relative mobility function with A is then mainly the result of the changing
¯ow ®eld around the rising bubble due to the change in boundary condition with varying A; in
this case, the lubrication ¯ow does not dominate until extremely small separations; thus, the
relative mobility functions do not exhibit the tendency to asymptote towards the completely
mobile solution in the range of practical separations.
The dimensionless relative velocity for gravity-induced motion in the direction perpendicular

to the line of centers is shown in Fig. 2. As expected, the transverse relative mobility function
tends to a constant value as sÿ 240: However, the higher values of the mobility for ®nite
values of A (with respect to those for the case of a rigid bubble) point to the existence of lower
tangential stresses at the bubble surface, consonant with the more relaxed velocity pro®les that
result from interfacial motion. Unlike for axisymmetric motion, the limit A41 does not
correspond to rigid spheres. Instead, the surfactant-covered bubble slides past the rigid particle
with reduced resistance, similar to the ®nding of Blawzdziewicz et al. (1999) for two surfactant-
covered bubbles. This e�ect becomes smaller as the particle-to-bubble size ratio is reduced.

4.2. Relative mobility functions for Brownian motion

Fig. 3 shows the dimensionless relative velocity along the line of centers for motion induced
by Brownian di�usion or by an interparticle force. As for gravitational motion, the no-slip
condition on the surface of the rigid particle results in the relative mobility function tending to
zero as the gap decreases. However, the e�ect of surface retardation on the relative mobility is
weaker than for gravitational motion, particularly at smaller gap separations.
The relative mobility function normal to the line of centers for Brownian motion is shown in

Fig. 4 and exhibits unusual behavior, including values greater than unity. A small particle in
Brownian motion has a high velocity relative to a larger bubble. As the particle approaches the
bubble, this velocity is retarded if the bubble surface is rigid. However, if the bubble surface is
mobile, then the particle experiences less resistance when it is close to the bubble surface than
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Fig. 1. The axisymmetric mobility function for gravitational motion versus the dimensionless interparticle separation
for particle-to-bubble size ratios of (a) l � 0:5, (b) l � 0:1 and (c) l � 0:02: Results shown are for A � 0 (upper
solid line), A � 0:1 (coincident with line for A � 0), A � 1:0 (dashed line), A � 10:0 (dotted line), A � 100 (dot-
dashed line) and A � 103 (dot-dot-dashed line). The lower solid line represents the results for A41 and is

coincident with the results for two approaching solid spheres.
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when it is isolated in the bulk ¯uid. This e�ect yields increased transverse relative mobilities for
l � 0:1 and 0.02 (Fig. 4(b) and (c)) but not for larger particles �l � 0:5, Fig. 4(a)).

4.3. Collection e�ciencies

The parabolized versions of Eqs. (7) and (8) (which involve neglecting the contribution of
transverse di�usion) were solved numerically using an algorithm developed by Zinchenko and
Davis (1994). All calculations account for retarded van der Waals attractive forces between the
bubble and particle (Schenkel and Kitchener, 1960; Ho and Higuchi, 1968). A typical value for
the Hamaker constant equal to kT was employed (Loewenberg and Davis, 1994), where k is
the Boltzmann constant and T is the absolute temperature, and the London retardation
wavelength was 0.1 mm. It is assumed that the surfactant is nonionic and that repulsive forces
between the particle and bubble are negligible. The calculations presented in this section are
based on an air bubble in water at room temperature �T � 298 K), so that the internal
viscosity of the bubble may be neglected. The suspended particle is assumed to be rigid, and to
be su�ciently small or neutrally buoyant so that its gravitational motion is negligible.
Figs. 5±7 show the collection e�ciency for di�erent values of the parameter A and three

®xed bubble PeÂ clet numbers of Pe � a1V
0
1=D1 � 5� 103, 2:5� 105, and 4� 106 (corresponding

to bubbles of approximate diameters of 10, 25 and 50 mm, respectively, typical of

Fig. 1 (continued)
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Fig. 2. The asymmetric mobility function for gravitation motion versus dimensionless interparticle separation for

particle-to-bubble size ratios of (a) l � 0:5, (b) l � 0:1and (c) l � 0:02: Results shown are for A � 0 (upper solid
line), A � 0:1 (thin solid line below A � 0), A � 1:0 (dashed line), A � 10:0 (dotted line), A � 100 (dot-dashed line)
and A � 103 (dot-dot-dashed line). The lower thin solid line represents the results for two approaching solid spheres;

the solid line above it represents the results for A41:
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micro¯otation applications), as a function of the particle-to-bubble size ratio. Included are the
results for bubbles with clean interfaces and with rigid interfaces. In all cases, bubbles with
completely mobile interfaces have the highest collection e�ciencies. The collection e�ciency is
then reduced with increasing surface retardation, since the reduced mobility of the interface
provides greater resistance to the ¯uid being squeezed out from the region separating the
approaching particles and bubble. The collection e�ciencies for A41 are slightly lower than
those for a rigid bubble, because the transverse relative mobility function M�s� is higher for
near contact in the former case, and the particle and bubble then move more quickly past each
other.
At large size ratios, the particles (as well as the bubbles) are nonBrownian, and

excellent agreement with the convective trajectory analysis is obtained. As the relative
particle size is decreased, the collection e�ciency decreases as the smaller particles tend to
follow the streamlines and be swept around the rising bubbles. A minimum in the
collection e�ciency then occurs, since the Brownian motion of the particles becomes
important for su�ciently small particles and increases the collision rate with further
reductions in particle size. Yang et al. (1995) also predicted a minimum in the collection
e�ciency versus size ratio, using an approximate additivity model of particle capture by
Brownian di�usion and interception acting independently. The particle-to-bubble size ratio
which minimizes the collection e�ciency shifts to smaller values with increasing bubble
size (or PeÂ clet number), since relatively smaller particles are required for Brownian e�ects
to compete with convective e�ects. At su�ciently small particle-to-bubble size ratios, the

Fig. 2 (continued)
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Fig. 3. The axisymmetric mobility function for Brownian di�usion versus the dimensionless interparticle separation

for particle-to-bubble size ratios of (a) l � 0:5 (a), (b) l � 0:1 and (c) l � 0:02: Results shown are for A � 0 (upper
solid line), A � 0:1 (coincident with line of A � 0), A � 1:0 (dashed line, coincident with the previous two curves in
(b) and (c)), A � 10:0 (dotted line), A � 100 (dot-dashed line) and A � 103 (dot-dot-dashed line). The lower solid

line represents the results for A41 and is coincident with the results for two approaching solid spheres.
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e�ect of surfactants on the collection e�ciency is reduced, because Brownian motion of
the solid particle becomes dominant and the velocity pro®le of the ¯uid surrounding the
bubble has a weaker role.
Included in Figs. 5 and 6 are the collection e�ciencies calculated from solving the

convection-di�usion equation for the mass transfer of point particles di�using to a rising
bubble with surfactant on its surface (Ramirez and Davis, 1999). The mass-transfer
solution slightly overpredicts the collection e�ciencies, even for the case of very small
suspended particles of the order of 0.1 mm in diameter (e.g., l � 0:01 in Fig. 5).
Hydrodynamic interactions retard the motion of these small but ®nite particles toward
the bubble surfaces, so that the collection e�ciency is reduced from the point-particle
limit.
Figs. 8±10 display the collection e�ciencies for ®xed particle-to-bubble size ratios of

l � 0:02, 0.1, and 0.5, respectively, in the range of bubble PeÂ clet numbers of relevance to
micro¯otation (Loewenberg and Davis, 1994; Ramirez et al., 1999). The collection e�ciency
decreases with increasing bubble size or PeÂ clet number in all cases, since the contributions due
to Brownian di�usion and van der Waals attraction become weaker. As in the previous results,
the collection e�ciency also decreases with increasing surface retardation, and its values for
A� 1 are below those for rigid bubbles of the same size. Surfactant e�ects are weakest for
relatively small particles sizes (Fig. 8) and small bubble sizes (small Pe ), since the Brownian
motion of the particle is then dominant over convective motion due to the rising bubble. In

Fig. 3 (continued)
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Fig. 4. The asymmetric mobility function for Brownian di�usion versus the dimensionless interparticle separation
for particle-to-bubble size ratios of (a) l � 0:5, (b) l � 0:1 and (c) l � 0:02: Results shown are for A � 0 (upper
solid line), A � 0:1 (thin solid line below A � 0, coincidence occurs in (c)), A � 1:0 (dashed line), A � 10:0 (dotted

line), A � 100 (dot-dashed line) and A � 103 (dot-dot-dashed line). The lower thin solid line represents the results
for two approaching solid spheres; the solid line above it represents the results for A41:
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Fig. 4 (continued)

Fig. 5. Collection e�ciency as a function of the particle to bubble size ratio at a ®xed bubble PeÂ clet number of

Pe � 5� 103: The upper solid line is for a bubble with a free interface �A � 0), and the lower solid line is for a
bubble with a rigid interface. The dashed lines are for A � 1, 10, 100, 1000, and 1 (top to bottom). The dotted
lines on the right-hand side are the results of trajectory calculations in the absence of Brownian di�usion for A � 1,

10, and 100 (top to bottom), while the dotted lines on the left-hand side are the point-particle mass-transfer solution
for A � 1, 10, 100 (top to bottom).
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contrast, surfactant e�ects are very strong in the convection-dominant region, with the values
of the collection e�ciency decreasing nearly 10-fold from those for A � 0 to those for A41
for Pe � 107 (corresponding to a bubble diameter in water of about 60 mm, which is near the
upper limit for Stokes motion).

Fig. 6. Collection e�ciency as a function of the particle-to-bubble size ratio at a ®xed bubble PeÂ clet number of
Pe � 2:5� 105: The upper solid line is for a bubble with a free interface �A � 0), and the lower solid line is for a

bubble with a rigid interface. The dashed lines are for A � 2:5, 25, 250, 2500, and 1 (top to bottom). The dotted
lines on the right-hand side are the results of trajectory calculations in the absence of Brownian di�usion for
A � 2:5, 25, and 1 (top to bottom), while the dotted lines on the left-hand side are the point-particle mass-transfer

solution for A � 2:5, 25, 250 (top to bottom).

Fig. 7. Collection e�ciency as a function of the particle-to-bubble size ratio at a ®xed bubble PeÂ clet number of
Pe � 4� 106: The upper solid line is for a bubble with a free interface �A � 0), and the lower solid line is for a
bubble with a rigid interface. The dashed lines are for A � 5, 50, 500, 5000, and 1 (top to bottom). The dotted

lines on the right-hand side are the results of trajectory calculations in the absence of Brownian di�usion for A � 5,
50, and 1 (top to bottom).

J.A. Ramirez et al. / International Journal of Multiphase Flow 26 (2000) 891±920906



5. Concluding remarks

A mathematical model has been developed to calculate the collection e�ciencies for which
small bubbles capture microscopic suspended particles in the presence of a surface-active
substance. Under conditions relevant to micro¯otation, the surfactant is considered to be
insoluble in the bulk and, when the deviation from the average surfactant surface
concentration on the surface of the bubble is small, Levich's theory of uniform retardation is
employed for describing the interfacial motion of the bubble. The particle-bubble interaction
was decomposed into axisymmetric and asymmetric contributions, and pairwise hydrodynamic
mobility functions were calculated for di�erent degrees of bubble surface retardation. The
collection e�ciencies were calculated using a trajectory analysis for motion induced by gravity
only and by numerical solution of the parabolized Fokker±Planck equation for collisions under
the combined e�ects of gravity and Brownian motion. Attractive van der Waals forces were
included in the analysis.
The e�ect of the adsorbed surfactant on the surface mobility of the bubble is described by a

retardation parameter which is the product of the Marangoni number and a surface PeÂ clet

Fig. 8. Collection e�ciency as a function of the bubble PeÂ clet number for a ®xed size ratio of l � 0:02: The upper
solid line is for bubbles with free surfaces, and the lower solid line is for rigid bubbles. The dashed lines are for
APeÿ1=4 � 0:1, 1.0, 10, 100, and 1 (top to bottom).
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number, A �MaPes: A wide range of values of this parameter may be encountered in practice
(Ramirez and Davis, 1999). In general, a decrease in the surface mobility (through a higher
value of A ) brings about diminished ¯otation performance. The e�ect is less pronounced for
smaller particles and bubbles, for which Brownian motion of the particles is strong. For larger
bubbles and particles, convective and hydrodynamic e�ects have increased importance, and the
e�ect of surface retardation is more dramatic, lowering the collection e�ciencies by as much as
an order of magnitude.
A minimum in the ¯otation collection e�ciency versus particle size occurs for particles of

approximately 1 mm diameter. This minimum represents a trade-o� between higher capture
rates with decreasing particle size due to increased Brownian motion, and reduced capture
rates with decreasing particle size due to stronger hydrodynamic interactions causing the small
particles to be swept past the rising bubble. The minimum shifts towards smaller particle sizes
with increasing surface mobility (smaller values of A ), because convective e�ects are then
stronger due to the tangential sliding motion of the bubble interface.
Tangential motion of the surfactant-covered bubble interface occurs when in near-contact

with a particle, even in the limit as A41: This sliding motion causes the transverse mobility

Fig. 9. Collection e�ciency as a function of the bubble PeÂ clet number for a ®xed size ratio of l � 0:1: The upper

solid line is for a bubble with a free interface �A � 0), and the lower solid line is for a bubble with a rigid interface.
The dashed lines are for APeÿ1=4 � 1, 10, 100, 1000, and 1 (top to bottom).

J.A. Ramirez et al. / International Journal of Multiphase Flow 26 (2000) 891±920908



functions for a bubble with surfactant in this limit to be higher than for a bubble with a rigid
interface. As a result, the collection e�ciency for large bubbles in the limit A41 is nearly
two-fold lower than predicted from previous results (Loewenberg and Davis, 1994) for rigid
bubbles of the same size.
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Appendix A. Axisymmetrical motion

Consider the bispherical coordinate system of Fig. 11, where

z � csinh Z
cosh Zÿ cos x

, �A1a�

Fig. 10. Collection e�ciency as a function of the bubble PeÂ clet number for a ®xed size ratio of l � 0:5: The upper
solid line is for a bubble with a free interface �A � 0), and the lower solid line is for a bubble with a rigid interface.

The dashed lines are for APeÿ1=4 � 1, 10, 100, 1000, and 1 (top to bottom).
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r � csin x
cosh Zÿ cos x

: �A1b�

The parameter c and the constants Z1 > 0 and Z2 < 0 may be determined for ®xed bubble and
particle radii �a1 and a2� through the expressions (Zinchenko, 1980)

cosh Z1 �
4
ÿ
1ÿ l2

�
�
ÿ
1� l2

�
s2

4s�1� l� , �A2a�

lsinh Z1 � sinh Z2, �A2b�

c � a1sinh Z1, �A2c�

with s � 2r=�a1 � a2� and l � a2=a1: The interacting spherical bodies become coordinate
surfaces when Z � Z1 for the bubble and Z � Z2 for the suspended particle.
The stream function for the ¯ow ®eld vanishing at in®nity is given in bispherical coordinates

by Je�ery (1912) as

c � c2���
2
p �cosh Zÿ m�ÿ3=2

X1
n�1

n�n� 1�Cn�Z�Qn�m�, �A3�

where m � cos x, and Cn�Z� is given in terms of the unknown coe�cients An, Bn, Cn, and Dn by

Cn�Z� � Ancosh
��nÿ 1=2�Z�� Bnsinh

��nÿ 1=2�Z�� Cncosh
��n� 3=2�Z��Dnsinh

��n� 3=2�Z�,
�A4�

Fig. 11. Schematic for bispherical coordinate system used in the treatment of the axisymmetric problem.
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and Qn�m� is the n� 1 order Gegenbauer polynomial related to the Legendre polynomials of
degree n� 1 and nÿ 1 by Qn � �Pn�1 ÿ Pnÿ1�=�2n� 1�:
Considerable simpli®cation of the problem is made by considering the stream function for

the relative ¯uid motion past the bubble (or particle), c�: In this case, if a reference frame ®xed
to the moving body is used, the stream function is given by (Happel and Brenner, 1986)

c� � c� c1 � c� 1

2
Vir2: �A5�

Here, Vi is the velocity of the moving bubble �i � 1� or particle �i � 2� along the z-axis and r is
the radial distance from the axis as de®ned in Fig. 11. The relative stream function can then be
written as

c� � c2���
2
p �cosh Zÿ m�ÿ3=2

X1
n�1

n�n� 1�C�n�Z�Qn�m�, �A6�

where

C�n�Z� � Cn�Z� � Vi

�
eÿ�n�3=2�jZj

2n� 3
ÿ eÿ�nÿ1=2�jZj

2nÿ 1

�
, i � 1 or 2, �A7�

The constants An,Bn,Cn, and Dn needed to completely de®ne the stream function C
surrounding the bubble and particle can be found from the boundary conditions. The
equations

C�n�Z1� � 0, �A8a�

C�n�Z2� � 0, �A8b�
result from the requirement of impenetrability of the ¯ow at the surface (no-¯ux boundary
condition). The condition of no slip on the solid particle requires that

dC�n
dZ

����
Z�Z2
� 0, �A8c�

while the tangential stress balance (see Eq. (4)) yields the di�erence equation

ÿ1
sinh Z1

�nÿ 1�
2nÿ 1

d2C�nÿ1
dZ2

�����
Z�Z1
�coth Z1

d2C�n
dZ2

�����
Z�Z1
ÿ 1

sinh Z1

�n� 2�
2n� 3

d2C�n�1
dZ2

�����
Z�Z1

� A
dC�n
dZ

����
Z�Z1

, �A8d�

where the function c�n�Z� is given by Eq. (A7).
The system of four equations (Eqs. (A8a)±(A8d)) for the unknown constants An and Dn can

be reduced to a single second-order di�erence equation for one of the unknowns (say, An),
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eventually resulting in a banded tridiagonal system for the set of coe�cients from n � 0 to n �
N solved through a variant of the Thomas algorithm. The regularity of the ¯ow ®eld allows us
to set the constants An, Bn, Cn, and Dn to zero at some large truncation bound N; only a
straight-through run (in the direction of ascending n ) is required (cf. Zinchenko, 1980), and the
truncation bound, N, is determined automatically in the course of the calculations.
Stimson and Je�erey (1926) showed that the hydrodynamic forces acting on the spherical

bodies along the axis parallel to their line of centers can be expressed in terms of the constants
as

F1 � ÿ2pma1c
X1
n�1

n�n� 1��An � Bn � Cn �Dn�, �A9a�

F2 � ÿ2pma2c
X1
n�1

n�n� 1��An ÿ Bn � Cn ÿDn�: �A9b�

On the other hand, the forces along the line of centers can be expressed in terms of resistance
coe�cients L11, L12, L21, and L22 as (Zinchenko, 1980)

F1 � ÿ6pma1
�
L11�V1 ÿ V2� � L12V2

�
, �A10a�

F2 � ÿ6pma2
�
L21�V2 ÿ V1� � L22V2

�
: �A10b�

Eqs. (A9), and (A10), permit the calculation of the resistance coe�cients from the stream-
function constants; the former are related to the mobility functions L�s� and G�s� through

L�s� � b�
L22

L11L22 � L12L21
, �A11a�

G�s� � b�

l� b�
L12 � lL22

L11L22 � L12L21
, �A11b�

where

b� � A� 2

A� 3
: �A11c�

These relations apply only for the simpli®ed case of V 0
2 � V 0

1 and negligible internal viscosity
of the bubble.

Appendix B. Asymmetrical motion

Even though the method of bispherical coordinates is known to be highly e�cient over a
wide range of particle-to-bubble size ratios and to very small separations (Zinchenko, 1980), it
is quite cumbersome to implement for the asymmetrical case of motion in the direction
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perpendicular to the line of centers. Fortunately, we have found that the multipole expansion
su�ces for the current problem and gives rapid convergence. Consequently, the hydrodynamic
problem of asymmetrical motion was solved by the method of multipole expansions, following
the technique of Zinchenko (1982).
Consider two interacting spherical bodies using two right-handed spherical coordinate

systems, �r1,y1,j1� and �r2,y2,j2), as shown in Fig. 12x. The angle ji corresponds to positive
rotation about the zi-axis, while ji � 0 de®nes the half plane contained by the xi > 0-axis and
the line of centers. The spatial variables are made non-dimensional by choosing the center-to-
center distance ` as the length scale. The velocity ®eld in the region between the spheres can be
written in the form, v � v1ÿ � v2ÿ: Here, each ®eld viÿ satis®es the Stokes equations, is regular
everywhere outside of the sphere of radius ai and vanishes at in®nity. These unknown ®elds
can be represented in terms of Lamb's general solution of Stokes equations as (Lamb, 1945)

viÿ �
X1
n�1

"
r �

�
riwiÿ�n�1�

�
� rFi

ÿ�n�1� �
�nÿ 2�r2irpiÿ�n�1�

2n�2nÿ 1� ÿ
�n� 1�ripiÿ�n�1�

n�2nÿ 1�

#
, �B1�

where the decaying harmonic functions wiÿ�n�1�, and Fi
ÿ�n�1� and piÿ�n�1� are given by

(Zinchenko, 1982)

piÿ�n�1� � rÿ�n�1�i P1
n�cos yi�Ai

ÿ�n�1�cos ji, �B2a�

Fi
ÿ�n�1� � rÿ�n�1�i P1

n�cos yi�Bi
ÿ�n�1�cosji, �B2b�

Fig. 12. Schematic of coordinate systems used in the treatment of the asymmetric problem.
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wiÿ�n�1� � rÿ�n�1�i P1
n�cos yi�C i

ÿ�n�1�sin ji: �B2c�

Here, Ai
ÿ�n�1�, Bi

ÿ�n�1�, and C i
ÿ�n�1�are unknown coe�cients, while P1

n is the associated
Legendre function.
In order to satisfy the boundary conditions on the bubble and particle surfaces, each

®eld,viÿ, should be reexpanded in the vicinity of the other sphere �i� 1; the indices i, i� 1 are
reduced by module 2) in Lamb's regular form,

vi�1� �
X1
n�1

"
r � ÿri�1wi�1n

�� rFi�1
n �

�n� 3�r2i�1rpi�in

2�n� 1��2n� 3� ÿ
nri�1pi�in

�n� 1��2n� 3�

#
, �B3�

with the growing harmonic functions wi�1n , Fi�1
n and pi�1n given by (Zinchenko, 1982)

pi�1n � rni�1P
1
n�cos yi�1�Ai�1

n cos ji�1, �B4a�

Fi�1
n � rni�1P

1
n�cos yi�1�Bi�1

n cos ji�1, �B4b�

wi�1n � rni�1P
1
n�cos yi�1�C i�1

n sin ji�1: �B4c�

The necessary relations for reexpansion of the velocity ®elds are (Zinchenko, 1982)

Ai�1
n �

X1
m�1

gmn A
i
ÿ�m�1�, �B5�

Bi�1
n �

X1
m�1

Ai
ÿ�m�1�

m�2mÿ 1�

"
�nÿ 1�

ÿ�mÿ 2��nÿ 1� ÿ �m� 1�
�

n�2nÿ 1� gmnÿ1 ÿ
mÿ 2

2
gmn

#

� gmn B
i
ÿ�m�1� �

m

n� 1
C i
ÿ�m�1�, �B6�

C i�1
n �

X1
m�1

gmn
mn�n� 1�A

i
ÿ�m�1� �

m

n� 1
gmn C

i
ÿ�m�1�, �B7�

where

gmn � �n�m�!
�mÿ 1�!�n� 1�! : �B8�

As with the axisymmetric case (Appendix A), it is convenient to consider the relative
dimensionless ¯ow velocity, v� � vÿ V1, in the vicinity of the bubble (sphere 1), where V1 �
�V1,0,0� is its dimensionless translational velocity vector given by (Happel and Brenner, 1986)
and
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v�1 �
X1

n�ÿ1

�
r � ÿr1w1n�� r ~F

1

n �
�n� 3�r21rp1n

2�n� 1��2n� 3� ÿ
nr1p

1
n

�n� 1��2n� 3�
�
, n6�1, �B9�

where ~F
1

n �F1
n ÿ dn,1V1r1sin y1cos j1 and dn,1 is the Kronecker delta function. For the normal

component of v� on the surface of the bubble, the relation (Happel and Brenner, 1986)

v� � er �
X1

n�ÿ1

�
n

r1
~F
1

n �
nr1p

1
n

2�2n� 3�
�

�B10�

can be used, with er being the outward unit normal for sphere 1. Grouping together the terms
with n and ÿ�n� 1�, we obtain from Eq. (B10)

v� � er �
X1
n�1

�
n

2�2n� 3�r1p
1
n �

n

r1
~F
1

n ÿ
n� 1

2�2nÿ 1�r1p
1
ÿ�n�1� ÿ

n� 1

r1
F1
ÿ�n�1�

�
: �B11�

The condition of no-¯ux through the bubble surface �v� � er � 0� then can be written, after
using Eqs. (B2a,b) and (B4a,b) for the spherical harmonics, as

A1
nna

n�1
1

2�2n� 3� �
~B
1

nna
nÿ1
1 ÿ A1

ÿ�n�1��n� 1�aÿn1

2�2nÿ 1� ÿ B1
ÿ�n�1��n� 1�aÿ�n�2�1 � 0, �B12�

with ~B
1

n � B1
n for n 6�1, ~B

1

1 � B1
1 ÿ V1, and a1 � a1=`:

A second relation results from the equation of conservation of surfactant at the surface of
the bubble, Eq. (4), which may be written in terms of the volumetric divergence as (Happel
and Brenner, 1986)

r �
�
A

a1
v� �PPP

�
ÿ 1

r2
@

@r

�
r2
�
A

a1
v�1 �PPP

�
� er
�
� 0: �B13�

The stress vector acting across the surface of the bubble in terms of the spherical harmonics is
(Happel and Brenner, 1986)

PPP � 1

r1

X1
v�ÿ1

"
�vÿ 1�r � ÿr1w1v �

� 2�vÿ 1�r ~F
1

v ÿ
ÿ
2v2 � 4v� 3

�
�v� 1��2v� 3�r1p

1
v �

n�n� 2�
�n� 1��2n� 3�r

2
1rp1n

#
, n6� ÿ 1:

�B14�

Using Eq. (B9) for the dimensionless relative ¯uid velocity, v�, and Eq. (B14) for the
dimensionless stress vector, PPP , evaluated at r1 � a1 , we obtain from Eq. (B13) that

X1
n�ÿ1

24�n2�n� 2�
2n� 3

� A
n�n� 1�
2�2n� 3�

�
p1n
a1
�
 
2�n2 ÿ 1�n� A

n�nÿ 1�
r21

!
~F
1

n

a31

35 � 0: �B15�

Grouping together the terms with n and ÿ�n� 1� in Eq. (B15) yields
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X1
n�1

��
n2�n� 2�
2n� 3

� A
n�n� 1�
2�2n� 3�

�
p1n
a1
�
�
2�n2 ÿ 1�n� An�nÿ 1�

� ~F
1

n

a31

�
"
�nÿ 1��n� 1�2

2nÿ 1
ÿ A

n�n� 1�
2�2nÿ 1�

#
p1ÿ�n�1�
a1

ÿ �2n�n� 2��n� 1� ÿ A�n� 1��n� 2��F1
ÿ�n�1�
a31

)
� 0:

�B16�

When the harmonic functions are represented by Eqs. (B2) and (B4), we obtain�
n2�n� 2�
2n� 3

� A
n�n� 1�
2�2n� 3�

�
anÿ11 A1

n �
"
�nÿ 1��n� 1�2

2nÿ 1
ÿ A

n�n� 1�
2�2nÿ 1�

#
aÿ�n�2�1 A1

ÿ�n�1��

�
2�n2 ÿ 1�n� An�nÿ 1�

�
anÿ31

~B
1

n ÿ
�
2n�n� 2��n� 1� ÿ A�n� 1��n� 2��aÿ�n�4�1 B1

ÿ�n�1� � 0:

�B17�
The combination of Eqs. (B12) and (B17) yields the following relationships between the
expansion coe�cients:

A1
ÿ�n�1� �

n�2nÿ 1�
2�2n� 1ÿ A��n� 1�

h
Aa2n�11 A1

n ÿ 2
��2n� 1��2ÿ A�

�
a2nÿ11

~B
1

n

i
, �B18�

B1
ÿ�n�1� �

n

2�2n� 1ÿ A��n� 1�
��2n� 1��2� A�

2�2n� 3� a2n�31 A1
n � A�2nÿ 1�a2n�11

~B
1

n

�
: �B19�

A third equation comes from writing (Happel and Brenner, 1986)

�r �PPP� � Ãer � 1

r1sin y1

�
@

@y1

�
sin y1�PPP�j1

�ÿ @

@j1

�PPP�y1
�
, �B20�

where �PPP�j1
and �PPP�y1 are the components of the dimensionless stress vector acting across the

bubble surface in the two mutually perpendicular tangential directions. From our discussion of
Section 2, it is seen that

�PPP�j1
� ÿMa

ÿrsG 0
�
j1
� ÿMa

1

r1sin y1

@G 0

@j1

, �B21a�

�PPP�y1� ÿMa
ÿrsG 0

�
y1
� ÿMa

1

r1

@G 0

@y1
: �B21b�

Substitution of Eq. (B21) into Eq. (B20) results in �r �PPPr� � Ãe � 0, which, when combined with
Eq. (B14) for the stress vector and grouping together the terms with n and ÿ�n� 1�, results in
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X1
n�1
�nÿ 1��n� 1�nw1n ÿ �n� 2��n� 1�nw1ÿ�n�1� � 0: �B22�

Using Eqs. (B2c) and (B4c) and evaluating at r1 � a1, yields

C 1
ÿ�n�1� ÿ

�nÿ 1�a2n�11

�n� 2� C 1
n � 0: �B23�

The no-¯ux boundary condition on the suspended particle,

A2
nna

n�1
2

2�2n� 3� �
~B
2

nna
nÿ1
2 � A2

ÿ�n�1��n� 1�aÿn2

2�2nÿ 1� ÿ B2
ÿ�n�1��n� 1�aÿ�n�2�2 � 0, �B24�

with ~B
2

n � B2
n for n 6�1 and ~B

2

1 � B2
1 ÿ V1, is obtained in analogous fashion as for the surface of

the bubble discussed earlier.
On the other hand, it is seen from the no-slip boundary condition that�r � �vÿ V2 ÿ OOO2 � r2�

� � er � 0, �B25�
where the particle dimensionless translational velocity is V2 � �V2,0,0� and its velocity of
rotation is OOO2 � �0,O2,0� . Using

vÿ V2 �
X1

n�ÿ1

�
r � ÿr2w2n��r ~F

2

n �
�n� 3�r22rp2n

2�n� 1��2n� 3� ÿ
nr2p

2
n

�n� 1��2n� 3�
�
, n 6� ÿ 1, �B26�

where ~F
2

n�F2
nÿdn,1V2r2sin y2cos j2 the following relation results (Happel and Brenner, 1986):�r � �vÿ V2 ÿ OOO2 � r2�

� � er � X1
n�ÿ1

n�n� 1�w2n, �B27�

which, when the terms with n and ÿ�n� 1� are grouped, becomesX1
n�1

n�n� 1�w2n � n�n� 1�w2ÿn�1 � 0, �B28�

with ~w2n � w2n ÿ O2r2sin y2sin f2: Using Eqs. (B2c) and (B4c) for the harmonic function, and
evaluating at r2 � a2, we obtain

C 2
ÿ�n�1� � a2n�12

~C
2

n � 0: �B29�
A third relation is obtained from the continuity equation applied at the surface of the particle:

r � v�2 �
1

r22

@

@r2

h
r22v
�
r2

i
� rs � v� � 0, �B30�

where the relative ¯uid velocity with respect to the particle is v� � vÿ V2 ÿOOO2 � r2, v
�
r2

is the
component of this velocity in the direction normal to the particle surface, and rs is applied
along the surface. As a consequence of the no-slip condition, the contribution of the surface
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divergence term in Eq. (B30) is zero, and thus we are left with

r2
@v�r2
@r2
� 0: �B31�

Using the expression (Happel and Brenner, 1986)

r2
@v�r2
@r2
�

X1
n�ÿ1

�
n�nÿ 1�

r2
~F
2

n �
n�n� 1�r2p2n
2�2n� 3�

�
, �B32�

and grouping the terms with n and ÿ�n� 1�, results inX1
n�1

�
n�nÿ 1�

r2
~F
2

n �
�n� 1��n� 2�

r2
F2
ÿ�n�1� �

n�n� 1�
2�2n� 3�r2p

2
n ÿ

n�n� 1�
2�2nÿ 1�r2p

2
ÿ�n�1�

�
� 0: �B33�

Using Eqs. (B2) and (B4) for the remaining harmonic functions in Eq. (B33), one obtains

n�nÿ 1�anÿ12
~B
2

n �
n�n� 1�
2�2n� 3�a

n�1
2 A2

n

� �n� 1��n� 2�aÿ�n�2�2 B2
ÿ�n�1� ÿ

n�n� 1�
2�2nÿ 1�a

ÿn
2 A2

ÿn�1 � 0,

�B34�

with ~B
2

n as de®ned earlier. The combination of Eqs. (B24) and (B34) yields the relations,

A2
ÿ�n�1� � ÿ

n�2nÿ 1�
2�n� 1�

h
a2n�12 A2

n � 2�2n� 1�a2nÿ12
~B
2

n

i
, �B35�

B2
ÿ�n�1� � ÿ

n

2�2n� 3��n� 1�
��2n� 1�

2
a2m�32 A2

n � �2nÿ 1��2n� 3�a2n�12
~B
2

n

�
: �B36�

Eqs. (B5)±(B8), (B18), (B19), (B23), (B29), (B35) and (B36) permit the calculation of the
constants Ai

n, B
i
n and C i

n: The calculation is started by arbitrarily setting A2
n, B

2
n and C 2

n to
zero for n 6�1: For n � 1, the constants A1

2 and ~B
2

1 are calculated from Eqs. (B35) and (B36),
since A2

ÿ2 is known through speci®cation of the force acting on the particle (Happel and
Brenner, 1986), F2 � ÿ4pmr�r32p2ÿ2� . Furthermore, since there is no net applied torque,
T2 � ÿ8pmr�r32w2ÿ2� � 0, we conclude that C 2

ÿ2 � 0: Eqs. (B29), (B35) and (B36) are used to
calculate the coe�cientsA2

ÿ�n�1�, B
2
ÿ�n�1� and C 2

ÿ�n�1�: The ®rst reexpansion is e�ected by using
Eqs. (B5)±(B8), which yields the coe�cients A1

n, B
1
n and C 1

n, after which (B18), (B19) and (B23)
are used for calculating A1

ÿ�n�1�, B1
ÿ�n�1� and C 1

ÿ�n�1� (where, analogously to the case of the
particle, A1

ÿ2 is known and ~B
1

n and A1
1 are calculated from Eqs. (B18) and (B19) with n � 1).

The reexpansion relations are then used for recalculating the coe�cients A2
n, B

2
n and C 2

n: The
procedure is repeated until convergence of the terms B2

1 ÿ ~B
2

1 � V ?2 and B1
1 ÿ ~B

1

1 � V ?1 , which
represent the dimensionless translational velocities of the particle and bubble, respectively, in
the direction perpendicular to their line of centers.
Once the bubble and particle velocities are known, the mobility coe�cients can easily be
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obtained from their de®nitions (Batchelor, 1982):

M�s� � V ?1 ÿ V ?2
V 0

1 ÿ V 0
2

�B37�

H�s� � V ?1 ÿ V ?2
D0

12=kT
�B38�

where the far-®eld relative velocity is given by Eq. (9) and the far-®eld relative di�usivity is
given by Eq. (10)
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